
A L Y APUNOV BOUND FOR 

SOLUTIONS OF POISSON'S EQUATION 

by 

Peter W. Glynn 

TECHNICAL REPORT No. 46 

November 1989 

Prepared under the Auspices 

of 

U.S. Army Research Contract 
D AAL-03-88-K -0063 

Approved for public release: distribution unlimited. 

Reproduction in whole or in part is permitted for any 
purpose of the United States government. 

DEPARTMENT OF OPERATIONS RESEARCH 
STANFORD UNIVERSITY 
STANFORD, CALIFORNIA 



ABSTRACT: 

A LYAPUNOV BOUND FOR 

SOLUTIONS OF POISSON'S EQUATION 

Peter W. Glynn 

Department of Operations Research 
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Stanford, CA 94305-4022 

Suppose that X is a positive recurrent Harris chain with invariant measure 1r. We 

develop a Lyapunov function criterion that permits one to bound the solution g to Poisson's 

equation for X. This bound is then applied to obtain sufficient conditions that guarantee 

that the solution be an element of LP( 1r ). When p = 2, the square integrability of g implies 

the validity of a functional central limit theorem for the Markov chain. We illustrate the 

technique with applications to the waiting time sequence of the single-server queue and 

autoregressive sequences. 
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1. INTRODUCTION 

Let X= (Xn : n ~ 0) be a (temporally homogeneous) Markov chain living on a mea

surable space (S,S). Given a real-valued S-measurable function J, Poisson's equation 

involves solving 

(1.1) g = Pg + f 

for the unknown function g, where P is the transition kernel of X. The solution g to 

Poisson's equation is fundamental to the analysis of the additive function 

n-1 

Sn = Lf(Xk)· 
k=O 

Set So = 0. The principal observation that underlies the analysis of (Sn : n ~ 0) is that the 

behavior of such an additive functional is closely related to that of a certain martingale. 

Specifically, let 

(1.2) 

for n ~ 0. Set :Fn = a(Xo, ... , Xn)· Proceeding formally, we note that since g solves (1.1), 

Ex [Mn+li:Fn] = (Pg)(Xn) + Sn+l 

= g(Xn) + Sn = Mn Px a.s. 

Hence, under suitable integrability conditions on f and g, it follows that M = (Mn : n ~ 0) 

is a Px-martingale with respect to the filtration (:Fn : n ~ 0). In fact, the martingale M 

is just the discrete-time analog of the well-known continuous-time martingale .M(t) = 
g(X(t)) + fot f(X(s)) ds, where f = -Ag and A is the (infinitesimal) generator of the 

Markov process X. 

Returning to (1.2), it is evident that the asymptotic behavior of (Sn : n ~ 0) will 

typically mimic that of the martingale M. In particular, laws of large numbers, central 

limit theorems, and laws of the iterated logarithm can often be derived for (Sn : n ~ 0) by 

applying appropriate martingale theorems. For example, MAIGRET (1978) and KURTZ 

(1981 use this approach to obtain functional central limit theorems (FCLT's) for recurrent 

discrete- time Markov chains, whereas BHATTACHARAYA (1982) uses similar techniques 

to derive FCLT's and laws of the iterated logarithm (LIL) for recurrent continuous-time 

Markov processes. However, in order to successfully apply this technique to a given chain, 
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one must basically show that the martingale difference sequence Dn = g(Xn)-(Pg)(Xn-1) 

is appropriately square integrable. 

In this paper, we develop, for positive recurrent Harris chains, a Lyapunov function 

criterion that permits one to verify that the solution gcL2 (1r), where 1r is the (unique) 

invariant measure of X. This guarantees that the martingale differences are well-behaved, 

so that the above mentioned FCLT's apply. Thus, the main goal of the paper is to derive 

an easily applied Lyapunov function technique that permits one to verify the hypotheses 

necessary in order to assert that (Sn : n ~ 0) satisfies a FCLT. 

3 



2. THE MAIN RESULT 

Throughout the remainder of this paper, we adopt the notation and terminology of 

NUMMELIN (1984) and REVUZ (1984). The function h that appears in the following 

proposition is called a (stochastic) Lyapunov function. 

PROPOSITION 1. Let J( be a non-negative a-finite kernel on (S, S). Suppose that 

there exists € > 0 and a finite-valued non-negative function h such that 

(2.1) (Kh)(x) ~ h(x)- €1f(x)l 

for x E S. Then, the equation g = Kg+ f has a solution g• 

lg*(x)l ~ h(x)/€ for xES. 

Proof. Since €1f(x)l + (Kh)(x) ~ h(x), it follows that 

00 

2:: J(n f that satisfies 
n=O 

Since ](0 h = h is finite-valued, induction shows that J(n h is finite-valued for all n ~ 0. 

Hence, we may re-write (2.2) as 

(2.3) 

m 

Summing both sides of (2.3) over n, we find that € 2:: Knlfl ~ h- J(m+ 1 h. Since h ~ 0, 
n=O 

00 

it is evident that € L::=o Knlfl ~ h, from which it follows that g• = 2:: J(n f converges, 
n=O 

satisfies g• ~ h/ €, and is a solution of g = J( g +f. 

We note that Proposition 1 does not typically apply to recurrent Markov chains. In 

particular, suppose that there exists a positive invariant measure 1r such that 1rh < oo. 

By applying 1r to both sides of (2.1 ), we find that (2.1) can only be satisfied globally iff 

vanishes 1r a.e. 

However, (2.1) can provide useful information for substochastic and transient kernels. 

EXAMPLE 1. Suppose that Xn = Xo + €1 + ... + €n, where the €/s are i.i.d. real-valued 

r.v.'s with Eexp(-A€i) < 1 for some A> 0. Suppose f(x) = O(exp(-Ax)) as x ~ oo. 

Then, if h( x) = exp(-AX), we find that 

(Ph)(x) = e->.xEe->.Et 

~ e->.x- €1f(x)l = h(x)- €1f(x)l, 
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provided that € = (1- Eexp(--\€!))(,8 + 1)-1 , where ,B = sup{exp(-\x)lf(x)l: x E R}. 

Hence, for f satisfying the above growth condition, Proposition 1 applies. 

We henceforth assume that P is the transition kernel of a Harris recurrent Markov 

chain with non-trivial invariant measure 1r. Then, there exists an integer n 2:: 1, a non

negativeS-measurable functions, and a probability measure v such that 

(2.4) pm 2:: S ® V 

with 1rs > 0 (see Section 2.3 of NUMMELIN (1984)). 

Suppose, for the moment, that m = 1 in the minorization condition (2.4) 

and put 
00 

Gs,v = L)P-s®vt. 
n=O 

According to Theorem 3.1 ii) of NUMMELIN (1985), it follows that if 

(G.,,v!fl)(x) < oo 

for all x E S and vGs,vf = 0, then f* = Gs,vf is a solution of Poisson's equation 

g(x) = (Pg)(x) + f(x) 

for all x E S. We note that the condition vG s,vf = 0 is equivalent to requiring that 1r f = 0 

(seep. 73 of NUMMELIN (1984)). 

Our goal is now to obtain a Lyapunov bound on g. Proposition 2 is an immediate 

consequence of Proposition 1. 

PROPOSITION 2. Suppose that there exists € > 0 and a finite-valued non-negative 

function h such that 

(2.5) ((P- s ® v)h)(x) $ h(x)- €jj(x)j 

for xES. If 1rj = 0, then g* = Gll,vf satisfies g = Pg+ f and the bound jg*(x)l $ h(x)j€. 

Before proceeding, we note that the solution g* is often unique, in a certain sense. 

PROPOSITION 3. Suppose that g*€L1 (1r) is a solution of g = Pg+ f. Then, if g.€L1 (1r) 

is another solution, there exists a constant c such that g. = g• + c1r a.e. 
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PROOF. Note that h =Ph, where h = g*- g. €L1 (1r). Then, it follows that h =Ph= 
n n 

P 2 h = ... = pnh so h(x) = n-1 'l:(Pkh)(x). But n- 1 'l:(Pkh)(x)-+ 1rh as n-+ oo for 
k=l k=l 

1r a.e. x (Proposition 3.5 and Theorem 7 of NUMMELIN (1978)). Hence, h(x) = 1rh 1r a.e. 

To prove that the solution g* = Gs,vf is an element of LP(1r), we can use the following 

result; the proof is an immediate consequence of Theorem 1 of TWEEDIE (1983). 

PROPOSITION 4. Let X be a positive recurrent Harris chain and let g* = Gs,11f. Sup

pose that there exists h ~ 0 satisfying (2.5), and a non-negative function k, 17 > 0, and a 

subset B E S such that 

(Pk)(x) ~ k(x)- ryhP(x) 

for x E Be. Then, if 1r is normalized to be a probability, 

6 
where llrll = sup{jr(x )I : x E S}. 

Unfortunately, Proposition 2 is difficult to apply in practice. There are two problem. 

Firstly, the function f that is of interest is rarely given explicitly as a centered functional 

for which 7r f = 0. Also, condition (2.5) can be difficult to verify because of the global 

character of the inequality. Theorem 1 remedies these problems. 

THEOREM 1. Let X be a Markov chain for which there exists a set A E S and). > 0 

such that 

(2.6) P(x, ·) ~ .Av(·) 

for all x E A. Suppose that there exists f, 17 > 0 and non-negative finite-valued S

measurable functions h and k such that 

(2.7) 

(2.8) 

(Ph)(x) ~ h(x)- f(lf(x)l + 1) 

(Pk)(x) ~ k(x)- ryh(x)P 

for x E A c and p > 0. In addition, assume that 

are all finite. Then: 
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i) X is a positive recurrent Harris chain; 

ii) If 1r is the (unique) invariant probability measure of X, then 1rlfl < oo and G.,,v(lfl + 
1) < oo; 

iii) If j = f -1rj, the function g* = G.,, 11 j satisfies Poisson's equation g*(x) = (Pg*)(x) + 

](x) for all xES: 

iv) There exist constants a and /3, independent of x, such that lg*(x)l ~ ah(x) + f3 for 

all XES; 

v) g* €LP( 1r ). 

PROOF. Let ](be a non-negative a-finite kernel. For A E S, set 
00 

n=O 
00 

n=O 
00 

n=O 
00 

n=O 

Vile start by showing that G = F. Note that G = I+ R + lAcKG, where R = IAKG. 

Iterating this equality n times, we find that 
n 

G = L,(IAcK)i(J + R) + (IAcl()n+IG. 
j=O 

n 

Hence, G ~ ~(IAcK)i(I + R). Letting n-+ oo, we find that 
j=O 

00 

n=O 
00 

n=O 

= HA +](A+ ](AJ(G. 

Iterating this last inequality n times, we get 
n 

j=O 
n 

~ L(I(AJ()i(HA + KA)· 
i=O 
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Letting n-+ oo, we obtain the inequality G ~ F. On the other hand, 

00 

= L(IAeKt[IAe + IA + IAJ(F] 
n=O 

00 

n=O 

n 
By iterating the equality n times, we conclude that F = 2: J(i + J("+1 F. Thus, F ~ 

j=O 
n oo 

2: J(i. By letting n-+ oo, we conclude that F ~ 2: J(", proving that G =F. 
j=O n=O 

We now let J( = P- s ® v. Note that 

Combining this inequality with (2.7), we conclude that 

where K = IAeK, h = IAeh, and j = IAe(lfl + 1). Proposition 1 then implies that 

00 

(2.9) L K" J = HA(IJI + 1) ~ h/e = IAehje. 
n=O 

For a non-negative kernel lV, let lllVII = sup{W(x, S): xES} < oo. Since KA(Ifl + 1) = 

KAIA(Ifl + 1), it is evident that IIKA(Ifl + 1)11 ~ IIPAIA(Ifl + 1)11 ~ IliA/II + 1. We now 

combine this bound with (2.9) and the fact that Gs,v = F to obtain 

00 

Gs,v(IJI + 1) = L(J(AKt(HA + J(A)(IJI + 1) 
n=O 
00 

~ L(I(AKt(h/e + IIIAfll + 1) 
n=O 

00 

n=O 
00 

~ h/e + L(KA/ K)"[IIIAKhll/e +IliA! II+ 1] 
n=O 
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But IIKAKII ~ IIKAII IIKII ~ IIPAII(1- .\) = (1- .\). This provides us with the bound 

(2.10) 

V.fe also observe that condition (2.7) guarantees that IAcPh ~ lAch- c!Acl. The test 

function criterion developed by TWEEDIE (1976), in conjunction with (2.6), then proves 

that X is a positive recurrent Harris chain. (See ATHREYA and NEY (1978) for a dis

cussion of the definition of a Harris chain that is suitable for our present purposes.) As a 

consequence, Theorem 1 of TWEEDIE (1943) implies that 

Thus, by applying (2.10), we get 

IG,,vfl ~ G,,v(lfl + l1r!l·1) 

~ Gs,vlfl + l1rJIGs,v · 1 

~ (1 + 17rfi)G,,v(IJI + 1) 

~ ah + (3 

for suitable constants a and (3 proving iv). The bound on the LP-norm of the solution 

g* = G,,11 j to Poisson's equation then follows immediately, upon application of Theorem 

1 of TWEEDIE (1983) to the function h. 

Although Theorem 1 covers a great many applications, there are certain settings in 

which the minorization condition (2.4) does not hold with m = 1. The remainder of this 

section is devoted to discussing the modifications necessary in order to deal with m > 1. 

Set 

oo m-1 

(2.11) Gm,s,v = L)pm - S 0v]n L pi. 
n=O j=O 

According to Theorem 3.5 to NUMMELIN (1985), the function g* = Gs,m,vf satisfies 

Poisson's equation g(x) = (Pg)(x) + f(x) for 1r a.e. x whenever 1r f = 0. (Actually, 

the statement of the result is that g* solves Poisson's equation on a closed domain of S. 

However, Proposition 2.5 of NUMMELIN (1984) asserts that the complement of any closed 

domain has 1r-measure zero.) 
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To carry out the program followed in the case m = 1 for the case m > 1 is now 

straightforward. We need to bound IGm,.,,vfl by a Lyapunov function of some kind. Note 

that 
00 

Gm,.,,vf = L J(n J, 
n=O 

m-1 

where I<= pm -s®v and f = L: pi f. A similar analysis to that used to derive Theorem 
j=O 

1 then yields the next result. 

THEOREM 2. Let X be a Markov chain for which there exists a set A E S and>. > 0 

such that 

(2.12) 

for all x E A. Suppose that there exists f, TJ > 0 and non-negative finite-valued S

measurable functions h and k such that 

(rh)(x)::; h(x)- < ('&.<P'IJI)(x) + 1) 
(Pk)(x) :=:; k(x)- ryh(x)P 

for x E Ac and p > 0. In addition, assume that IIJApk IJIII(O :=:; k :=:; m-1), IIJApm hll, IIIAhll, IIIAPkli 

are all finite. Then: 

i) X is a positive recurrent Harris chain; 

ii) If 1r is the (unique) invariant probability measure of X, then 1rlfl < oo and Gm,.,,v(lfl+ 
1) < oo for all x E S; 

iii) If J = f- 1rj, the function g* = Gm,.,,vf satisfies Poisson's equation g*(x) = 
(Pg*)(x) + f(x) at 1r a.e. x; 

iv) There exists constants a, {3, independent of x, such that lg*(x)l :::; ah(x) + f3 for all 

XES; 

v) g* E LP( 7r ). 

We note that there always exists a set A satisfying (2.12) if X is a Harris chain. Further

more, in many applications settings, the set A will be compact and j, h, and k continuous. 

If the transition function P is Feller (i .e, Pr is bounded and continuous whenever r is), 

then pij, Pih, and plk will usually be continuous (this is automatic if the functions are 

bounded), and the finiteness of IliA Pi !II, IIIAPi hi I, and IIJApl kll is then immediate. 
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We conclude this section with an application of our results to the question of when a 

FCLT holds for an additive functional of a Markov chain X. 

THEOREM 3. Suppose that either Theorem 1 or Theorem 2 is in force with p = 2. Then, 

there exist constants rand er such that Zn =>erE P1"-weakly as n---+ oo in D(O, oo) (for J.L 

is an arbitrary probability measure on (S, S)), where 

( 

1 lntJ ) 
~n(t) = n

1
1

2 
;;- t; f(Xk)- rt . 

Furthermore, the constants r and er2 can be defined as r = 1r f and er2 = 1r(g*)2 -1r(Pg*)2, 

when g• is defined as in Theorems 1 and 2. 

This basically follows from MAIGRET (1978). Our theorem actually reqmres a 

slightly strengthened version of her result, because Theorem 3 asserts that the weak con

vergence holds for any initial distribution J.L· To obtain our result from MAIGRET (1978), 

let A.,t(B) = {n- 112 c~ f(X<)- r-) E B}, forB a (measurable) subset of D[O, oo). If 

X is an aperiodic Harris chain, then J.Lpt converges to 1r in total variation norm. As a 

consequence, 

E 

as .e---+ oo. Since MAIGRET (1978) does establish weak convergence under P1r, it is evident 

that P1r(An ,t(·)) => P{erEt·} as n---+ oo. Noting that 

P1l-weakly in D[O, oo), we may therefore conclude that Zn =>erE P1"-weakly. Thus, Theo

rem 3 holds under any initial distribution J.L· (A slight variation in this argument handles 

the case when X is periodic.) 
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3. EXAMPLES 

In this section, we illustrate our Lyapunov function techniques with a couple of ex

amples. 

EXAMPLE 2. Let Xn+l = [Xn + 7Jn+t]+, where (1Jn : n > 1) is i.i.d. For simplicity of 

exposition, we require that 1Jn have a distribution that satisfies P{7Jn:::::; x} > 0 for all x. 

The chain X = (Xn : n ~ 0) can be viewed as the waiting-time sequence of a single-server 

queuing system (see ASMUSSEN (1987)). It is well known that if EI7J1 I < oo, then it is 

necessary that E171 < 0 in order that X be a positive recurrent Harris chain. Furthermore, 

it is easy to see that condition (2.6) holds for any compact set A ~ [0, oo) (we can then 

take v to be a point mass at zero). 

Suppose that f(x) = x. Then, if E7]1 < 0 and EI7J1 I5 < oo, we can choose h(x) = x 2 

and k( x) = x 5
• Note that 

(Ph)(x) = h(x) + 2f(x)E1J1 + 0(1) 

(Pk )(x) = k(x) + 5h(x? E171 + O(x3
) 

as x -t oo. By choosing €, 7], and ]( appropriately, it is evident that (2. 7) and (2.8) 

can be made to hold for x ~ K. By choosing A = [0, K], we find that Theorems 1 and 

3 then apply. Hence, Sn = xl + ... + Xn satisfies a FCLT if E1Jl < 0, EI7Jtl5 < oo, 

and P { 7Jl :::; x} > 0 for all x. (By arguing more carefully, one can easily drop this last 

hypothesis.) 

It turns out that the fifth moment hypothesis tat we have imposed is close to the 

right condition for guaranteeing that Sn satisfy a FCLT. DALEY (1968) shows that for 

the GI/G/1 queue, it is necessary and sufficient that Emax(O, 174
) < oo in order that the 

senes 

n=O 

be absolutely summable. This absolute summability condition is implicit in many FCLT's 

for stationary processes (see ETHIER and KURTZ (1986), p. 351). This suggests that 

the "correct" condition to require for validity of the FCLT in this setting is E1Jf < oo. It 

is reasonable to question why our proof requires an additional moment on 7Jt· 

The basic reason is that the martingale CLT basically applies to the additive functional 

(Sn : n ~ 0) whenever E1rDi < oo, where Dk = g(Xk)- (Pg)(Xk_t). Suppose that 

g E L 2 (n} Then, g(Xk)- (Pg)(Xk-t) is orthogonal to (Pg)(Xk_t), so that 

E1rD~ = Etrl(Xo)- Etr(Pg)(Xo)2
• 
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The approach that we have followed in this paper to show that ErrDr < oo is to establish 

sufficient conditions, using Lyapunov functions, for the finiteness of Errg2 (Xo ). This is the 

standard technique used in the literature to verify square integrability of Dk. However, in 

this example, we believe that if Eryf < oo with Elry1 l5 = oo, then geL2 (1r) but En-D~< 

oo. Thus, our analysis does not obtain the appropriate moment condition because it is 

not a fine enough tool to be able to pick up "cancellation" that occurs between g(Xn) 

and (Pg)(Xn-d· However, it seems likely that in most examples, the cancellation effect 

is probably insignificant. Thus, one can expect that in general, the Lyapunov function 

method described in this paper should be capable of obtaining moment conditions that 

are close to optimal. This is illustrated in our next example. 

EXAMPLE 3. Let Xn+I = pXn + TJn+b where (TJn : n ~ 1) is i.i.d. To simplify our 

discussion, we shall require that TJn has a continuous Lebesque density that is strictly 

positive everywhere. The chain X = (Xn : n ~ 0) given in this example is, of course, just 

a first-order autoregressive sequence. For stability of X, we shall demand that IPI < 1 and 

Elry1 l < oo. As in Example 2, it is easily checked that condition (2.6) holds whenever A is 

a compact subset of ( -oo, oo) (we can take v equal to Lebesque measure on [0, 1]). 

Suppose that f(x) = x. We claim that if Ery~ < oo, then Sn = X 1 + .. . +Xn satisfies 

a FCLT. To see this, we put h(x) = lxl and k(x) = x2 • Then, 

(Ph((x) ~ IP ·lxl + EITJII 
= h(x) -lf(x)l(1 -lpl) + 0(1) 

and 
(Pk)(x) = /x2 + 2pxET}I + Eryi 

= k(x) + (p2 -1)h2 (x) + O(x) 

as x --+ oo. Again, an appropriate choice of e, ry, and J( prove that conditions (2.6)

(2.8) hold for A = [-K, K). Thus, the condition Eryr < oo suffices to guarantee that 

(Sn : n ~ 0) satisfies a FCLT. We note that the Lyapunov function method that we have 

applied produces the minimal moment condition required for this FCLT. 
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ABSTRACT: 

A LYAPUNOV BOUND FOR 

SOLUTIONS OF POISSON'S EQUATION 

Peter W. Glynn 

Department of Operations Research 
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Suppose that X is a positive recurrent Harris chain with invariant measure 1r. \Ve 

develop a Lyapunov function criterion that permits one to bound the solution g to Poisson's 

equation for X. This bound is then applied to obtain sufficient conditions that guarantee 

that the solution be an element of LP('~r) . When p = 2, the square integrability of g implies 

the validity of a functional central limit theorem for the Markov chain. We illustrate the 

technique with applications to the waiting time sequence of the single-server queue and 

autoregressive sequences. 
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